PageRank

- WebMontag Erfurt -

Sascha Grau

Technische Universität Ilmenau

10. Dezember 2012

Ranking von Dokumenten

Ziel

(Relevanz-)Ordnung über vorgegebener Menge von Dokumenten.

Web-Ranking bis 1998

```
<html>
<head>
 <title>
    [Web Montag Erfurt]
 </title>
</head>
<body>
 <h1>Web-Montag EF</h1>
 Hello World!
</body>
</html>
```

Rein stichwort-basierte Suche

Marktführer: Altavista

- Indizierung von Text und HTML-Tags
- 2 Reduktion auf Wortstämme
- Textgewichtung und Textnormalisierung (Überschriften, Textlänge)
- häufigkeitsbasierte Auswertung

Ein akademisches Projekt

PageRank (S. Brin, L. Page, 1998)

- Larry Page und Sergey Brin als Doktoranden in Stanford
- Ziel: Ordnung wissenschaftlicher Veröffentlichungen
- 1996: 'BackRub' Suche auf http://www.stanford.edu
- 1998: Studienabbruch, Gründung Google Inc.

Die Idee von PageRank

Grundidee

- Ranking berücksichtigt zusätzlich Link-Struktur der Dokumente.
- Linksetzung als Empfehlung der Zielseite
- Links wichtiger Seiten sind wichtiger

Die Idee von PageRank

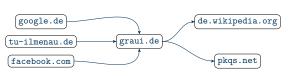
Grundidee

- Ranking berücksichtigt zusätzlich Link-Struktur der Dokumente.
- Linksetzung als Empfehlung der Zielseite
- Links wichtiger Seiten sind wichtiger

Erhebung der Link-Daten

Automatisiertes Crawling ("GoogleBot"), Filterung: robots.txt

Rang und Ranking

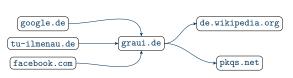


Rang	Seite
0.3	google.de
0.21	de.wikipedia.org
0.2	facebook.com
0.1	tu-ilmenau.de
0.001	graui.de
0.001	pkqs.net

Rang

- ullet Jedes Dokument v besitzt $Rang \ \mathrm{pr}[v] \in \mathbb{Q}$
- Ranking ist Sortierung der Dokumente nach ihrem Rang
- Dokumente verteilen eigenen Rang gleichmäßig auf alle Nachfolger

Rang und Ranking



Rang	Seite
0.3	google.de
0.21	de.wikipedia.org
0.2	facebook.com
0.1	tu-ilmenau.de
0.001	graui.de
0.001	pkqs.net

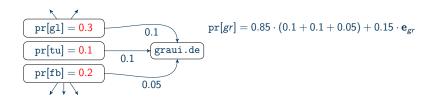
Rang

- ullet Jedes Dokument v besitzt $Rang \ \mathrm{pr}[v] \in \mathbb{Q}$
- Ranking ist Sortierung der Dokumente nach ihrem Rang
- Dokumente verteilen eigenen Rang gleichmäßig auf alle Nachfolger

Wie kommt Rang anfänglich in das System?

Initialisierungsvektor **e** mit Einträgen $\mathbf{e}_v \in \mathbb{Q}$

PageRank Berechnung (1)

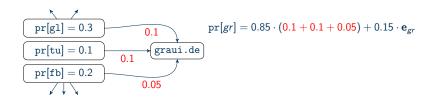


$$\left[exttt{pr}[v] = d \sum_{w|w
ightarrow v} rac{ exttt{pr}[w]}{ ext{out}(w)} + (1-d) \mathbf{e}_v
ight]$$

Was ist gegeben?

- Dokumentenstruktur als Graph
- Initialisierungsvektor e
- Dämpfungsfaktor d mit 0 < d < 1

PageRank Berechnung (1)

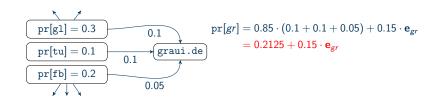


$$\left[exttt{pr}[v] = d \sum_{w|w
ightarrow v} rac{ exttt{pr}[w]}{ ext{out}(w)} + (1-d) \mathbf{e}_v
ight]$$

Was ist gegeben?

- Dokumentenstruktur als Graph
- Initialisierungsvektor e
- Dämpfungsfaktor d mit 0 < d < 1

PageRank Berechnung (1)

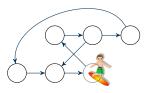


$$\left[exttt{pr}[v] = d \sum_{w|w
ightarrow v} rac{ exttt{pr}[w]}{ ext{out}(w)} + (1-d) \mathbf{e}_v
ight]$$

Was ist gegeben?

- Dokumentenstruktur als Graph
- Initialisierungsvektor e
- Dämpfungsfaktor d mit 0 < d < 1

Interpretationen der PageRank-Formel



Der Zufallssurfer

- ullet ... startet mit Wahrscheinlichkeit $oldsymbol{e}_v$ auf Seite v
- ullet ... entscheidet mit Wkt. (1-d) dass er seine Reise in v beendet
- ... oder wählt gleichverteilt Nachfolgerseite und springt dorthin
- ... schmollt falls kein Nachfolger existiert

Der PageRank von v ist die Wkt. dass Zufallssurfer freiwillig in v hält.

PageRank Berechnung (2)

PageRank ist Lösung lin. Gleichungssystems

$$(I - dM^T)$$
 pr = $(1 - d)$ **e**

mit
$$M=(m_{uv})$$
 und $m_{uv}= \begin{cases} 1/\mathrm{out}(u) &, \text{ falls } u \to v \text{ existiert} \\ 0 &, \text{ sonst.} \end{cases}$

- Herausforderung: ≥ 7.620.000.000 Webseiten im Google-Index
- Direkte Lösung: Gauss'sches Eliminationsverfahren
- Iterative Lösung: (Jakobi / Gauss-Seidel-Verfahren)
 - Beginn mit beliebiger Initialisierung
 - ► Rundenweise Adaption der Rang-Werte über PageRank-Formel
 - ▶ Mit 0 < d < 1 ist Konvergenz beweisbar
 - hervorragend parallelisierbar

PageRank Berechnung (2)

PageRank ist Lösung lin. Gleichungssystems

$$(I - dM^T)$$
 pr = $(1 - d)$ **e**

mit
$$M=(m_{uv})$$
 und $m_{uv}= \begin{cases} 1/\mathrm{out}(u) &, \text{ falls } u \to v \text{ existiert} \\ 0 &, \text{ sonst.} \end{cases}$

- Herausforderung: ≥ 7.620.000.000 Webseiten im Google-Index
- Direkte Lösung: Gauss'sches Eliminationsverfahren
- Iterative Lösung: (Jakobi / Gauss-Seidel-Verfahren)
 - Beginn mit beliebiger Initialisierung
 - ► Rundenweise Adaption der Rang-Werte über PageRank-Formel
 - ▶ Mit 0 < d < 1 ist Konvergenz beweisbar
 - hervorragend parallelisierbar

Personalisierung (1)

Interpretationen Zufallssurfer

Initialisierungsvektor e bestimmt Startpunkt ⇒ e zu a priori Auf- und Abwertung von Webseiten einsetzbar

- generell: beliebiger Vektor e funktioniert
- nur Verhältnis der Einträge ist relevant

$$\mathbf{e}_{\text{de.wikipedia.org}} = 0.1$$

$$\mathbf{e}_{\mathtt{webmontag.de}} = 0.05$$

$$\mathbf{e}_{\texttt{bing.de}} = 0.00000001$$

Personalisierung (1)

Interpretationen Zufallssurfer

Initialisierungsvektor e bestimmt Startpunkt $\Rightarrow e$ zu a priori Auf- und Abwertung von Webseiten einsetzbar

- generell: beliebiger Vektor e funktioniert
- nur Verhältnis der Einträge ist relevant

$$\mathbf{e}_{\text{de.wikipedia.org}} = 0.1$$

$$\mathbf{e}_{\mathtt{webmontag.de}} = 0.05$$

$$e_{\text{bing.de}} = 0.0000001$$

Aber:

- PageRank-Berechnung pro inidividualisiertem Vektor e extrem aufwendig
- so nur zentralisierte Gewichtung, keine wirklich Individualisierung

Personalisierung (2)

Eine praktische Eigenschaft

PageRank ist lineare Abbildung des Personalisierungsvektors e, d.h. es gilt

$$\begin{split} c \cdot \mathrm{pr}_{\mathbf{e}}[v] &= \mathrm{pr}_{c \cdot \mathbf{e}}[v], \\ \mathrm{pr}_{\mathbf{e}_1}[v] &+ \mathrm{pr}_{\mathbf{e}_2}[v] &= \mathrm{pr}_{\mathbf{e}_1 + \mathbf{e}_2}[v] \end{split}$$

Thematische Individualisierung

- PageRank-Vorberechnung für verschiedene Individualisierungsvektoren
 e₁,..., e_k
 - Gogle
- z.B. thematische Vektoren: News, Unterhaltung, Sport, Linux
- ullet Nutzer wählt Themenbereiche $T\subseteq\{1,\ldots,k\}$
- gewichtete Kombination ergibt PageRank:

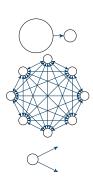
$$pr[v] = \sum_{i \in T} c_i \cdot pr_{\mathbf{e}_i}[v]$$

Einflussnahme auf eigenen PageRank

Direkte Einflussnahme schwierig, da PageRank von eingehenden Links bestimmt wird.

PageRank-Manipulation

- eingehende Links von Seiten mit hohem Rang (Link-Tausch, unfreiwillig: Kommentar-Spam)
- hohe Zahl eingehender Links und enge Vermaschung (Link-Farming, Klone)
- aber auch: selbst Links setzen (Google erteilt Mali auf Senken)



Abwertung gemäß Google Qualitätsrichtlinien

- strukturelle Analyse
 - Link-Farming, sehr hohe Ausgangsgrade
 - ► inhaltsarme aber suchthemenoptimierte Eingangsseiten die auf Hauptseite verlinken
- inhaltliche Analyse
 - ▶ generierte Inhalte (Übersetzungen, automatische Mash-Ups, . . .)
 - versteckter Text oder Links
 - ► Kopien hochwertiger Inhalte (Wikipedia)
 - unnatürlich hohe Frequenz von Schlüsselworten (Listen, Wiederholungen)
- Verhaltensanalyse
 - versch. Content für Suchmaschinen und User (Redirect, Browserschranke)
 - manipulierte "rich snippets"
 - ► Phishing, Malware, ...

Fazit

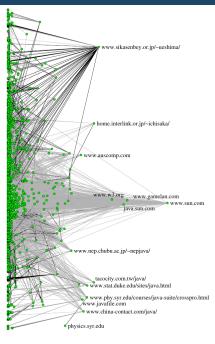
Rezept für solide Positionierung im Ranking

PageRank allein:

- häufige Verlinkung
- Verlinkung durch einflussreiche Seiten
- gezieltes und bedachtes Setzen eigener Links

Zusätzlich durch Google:

- gute, eigene Inhalte
- richtige Stichworte
- Nutzung der Google-Werkzeuge (z.B. rich snippets)
- wenig "schmutzige" Tricks



Vielen Dank für eure Aufmerksamkeit.

Literatur

Ulrik Brandes

Visual Ranking of Link Structures.

In Journal of Graph Algorithms and Applications, 7(2):191–201, 2003.

Sergey Brin and Lawrence Page.

The anatomy of a large-scale hypertextual web-search engine. In *Proc. of the 7th World Wide Web Conference (WWW7)*, 1998.

Michael Brinkmeier.

PageRank revisited.

In ACM Trans. Internet Techn., 6(3), S. 282-301, 2006

Taher H. Haveliwala.

Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search.

In IEEE Trans. Knowl. Data Eng., 15(4):784-796, 2003.