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Abstract. We consider a scenario of information broadcast where a
source node distributes data in parallel over a fixed number of trees
spanning over a large audience of nodes. The trees used for data dis-
semination are called distribution topology. Particular implementations
of this scenario are peer-to-peer live streaming systems. Encoding data
partially redundant, nodes are satisfied as long as they receive packets
in at least a certain portion of trees. Otherwise, they are called isolated.
We study distribution topologies limiting the worst-case consequences of
attacks suddenly removing nodes from the trees. In particular, we aim
to minimize the maximum possible number of isolated nodes for each
number of removed nodes. We show necessary conditions on distribu-
tion topologies closely approximating this goal. Then, we demonstrate
that the attack-resilience of topologies adhering to these conditions is
characterized by specific matrices that have to be Orthogonal Arrays
of maximum strength. The computational complexity of finding such
matrices for arbitrary dimensions is a long-standing research problem.
Our results show that finding representatives of the studied distribution
topologies is at least as hard as this problem.

Keywords: network topologies, dependability, P2P, orthogonal arrays

1 Introduction

In many applications data shall be reliably broadcast from a resource-
restricted source to a large audience of nodes. Applying multiple descrip-
tion coding [1] or error-correcting codes [2], it is possible to split each
block of data into k subblocks, such that the reception of a certain por-
tion of these subblocks already satisfies the participating nodes (i.e. they
can restore the original data to satisfactory degree).

Distributing each of the k subblocks from node to node over a distinct
tree rooted at the source, a data distribution system is obtained which
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is tolerant to failures. Furthermore, the number of participants in such a
system can scale independently from resource restrictions of the source.
Popular implementations of such approaches can be found in peer-to-peer
live streaming systems like [3,4,5].

Due to their spreading application and growing importance, such data
distribution systems are target of attacks. Abstracting from technical de-
tails, these attacks can often be modeled as a removal of nodes from the
system. The consequences of such a removal can be measured as damage
and depend on the layout of the distribution topology, i.e., the trees used
for data dissemination. This motivated the study of distribution topolo-
gies minimizing the maximum damage that is achievable on them.

Here, different measures of damage can be of interest. In the past,
distribution topologies minimizing notions of system-wide damage, like
the global number of disturbed source-to-node paths, have been identified
[3,6]. However, in many applications a damage measure based on the user-
perceived quality of the data distribution service is more relevant. This
corresponds to counting the number of nodes that are no longer satisfied
since they lost too many paths from the source.

In the following, distribution topologies minimizing this kind of dam-
age are called attack-resilient. Despite their relevance, the author is not
aware of any analytical study of such topologies or of related network
design problems based on a similarly generalized concept of connectiv-
ity. Current applications resort to following rules of thumb, as building
‘diverse trees’ [5]. Some insights for scenarios considering random node
removal instead of worst-case attacks were obtained by simulation in [7].

Contribution In this document, we introduce forward-stable distribution
topologies and show that they closely approximate attack-resilient topolo-
gies in situtations where the number of nodes considerably exceeds the
number of source neighbors. This is a usual condition in applications of
multitree data distribution topologies. We find necessary and sufficient
requirements for forward-stable topologies and show that they can be
characterized by matrices representing certain successor relations in the
trees. By showing that these matrices have to be Orthogonal Arrays of
maximum possible strength, we discover connections to design and coding
theory. In particular, we show that the identification of an efficient con-
struction scheme for forward-stable topologies would solve several long-
standing open problems in these areas.

Structure of This Document In Section 2, we specify our system model
and formalize the notion of attack-resilient distribution topologies. Sec-
tion 3 introduces and motivates an alternative damage measure which
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is then used in Section 4 to define forward-stable distribution topolo-
gies. Their properties are studied in-depth in the following Subsections.
Finally, Section 5 concludes this document.

2 System Model and Attack-Resilient Topologies

In our system model, a source s distributes data to a set V = {1, . . . , n}
of nodes. Each block of data is encoded into k subblocks and a node
is satisfied as long as it receives more than k − z such subblocks, for a
fixed z ∈ {1, . . . , k} (see [1,2] for suitable encoding schemes). Otherwise,
the node is called isolated. Each subblock is distributed over one of k
distribution trees (also called stripes). Those have node set {s} ∪ V , are
rooted at s, and are directed towards the leafs. A distribution topology is
a k-tupel T = (T1, . . . , Tk) of stripes. The nodes that are adjacent to the
source in stripe Ti of T are the heads HTi . The nodes HT =

⋃
i∈{1,...,k}H

T
i

are the heads of T .

We assume that the maximum degree of source node s is limited to
a value of Ck, for C ∈ N and n ≥ Ck. The class of all distribution
topologies with k trees, node set V = {1, . . . , n} and source degree limit
Ck is denoted as T(n,C, k).

The data distribution over a topology T ∈ T(n,C, k) can be disturbed
in a number of ways. In this document, we study the consequences of sud-
den removals of nodes. Such events are common, especially in peer-to-peer
systems with their unreliable and vulnerable participants. Considering the
worst-case, we assume that the sets of removed nodes are the result of a
malicious planning process. For this reason, they are termed as attacks.
Note that we do not account for a removal of the source node, since it
would always result in a non-functional distribution topology. Further-
more, in practical applications it is usual to take special measures to
safeguard source functionality.

When a node v is removed from topology T , in each stripe Ti with
i ∈ {1, . . . , k}, the paths between s and all nodes in the subtree rooted at v
become disturbed. The set of nodes in this subtree is denoted as successor
set succTi (v) and contains v. For node sets X, we correspondingly define
succTi (X) =

⋃
v∈X succTi (v). Figure 2 gives an example.

Assuming that a node is isolated by the loss of at least z paths from
the source, the number of nodes isolated by attack X is counted as damage

bT (X, z) :=

∣∣∣∣ ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succTi (X)

∣∣∣∣. (1)
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Fig. 1. Attack X = {1, 6, 9} on this topology T ∈ T(12, 3, 3) leads to bT (X, 2) = 5
(attacked nodes gray, isolated nodes double-lined).

Figure 1 shows an example in which nodes are isolated by the loss of at
least 2 paths from the source.

Given an arbitrary class T(n,C, k), we are generally interested in find-
ing topologies T ∈ T(n,C, k) minimizing the maximum damage that can
occur for every possible number x of removed nodes and every value of
threshold z. Note that for x ≥ Cz, it is possible to remove all heads of
z stripes (the ones with the least number of heads) and isolate all nodes.
Hence, the maximum damage on topologies in T(n,C, k) can only differ
for x < Cz ≤ Ck. This leads to the following definition.

Definition 1. A topology T ∈ T(n,C, k) is attack-resilient, if for all
z ∈ {1, . . . , k}, all x ∈ {1, . . . , Ck}, and all C ∈ T(n,C, k), it holds that

max
X⊆V,|X|=x

bT (X, z) ≤ max
X⊆V,|X|=x

bC(X, z).

3 An Approximative Damage Measure

The function bT (X, z) used to characterize attack-resilient topologies
counts nodes of two different kinds. On the one hand, it considers all
removed nodes in the set X. On the other hand, it counts nodes posi-
tioned in subtrees below removed nodes in at least z stripes. Furthermore,
there are nodes falling into both categories. This superposition of different
causes of damage complicates an analyis. For this reason, we choose to
study a slightly altered notion of damage. At first, we define the forward
successor set of a node v in stripe Ti of T :

succT →i (v) :=

{
succTi (v) , if |succTi (v)| > 1 or v ∈ HTi
∅ , otherwise.

(2)

It is equal to the successor set in most cases, but is empty if v is neither
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(a) A tree Ti from a topology T .

X succTi (X) succT →i (X)

{1} {1} {1}
{3} {3, 6} {3, 6}
{4} {4} ∅
{3, 5, 6} {3, 5, 6, 7} {3, 5, 6, 7}

(b) Successor and forward successor sets.

Fig. 2. Different concepts of successor sets.

head nor has children in Ti. Again, this definition extends to node sets:
succT →i (X) =

⋃
v∈X succT →i (v). Figure 2 provides an example.

For T ∈ T(n,C, k), z ∈ {1, . . . , k}, and attacks X ⊆ V , we define the
corresponding damage function as forward damage

bfT (X, z) :=

∣∣∣∣ ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succT →i (X)

∣∣∣∣. (3)

Since it holds that succTi (X) = X ∪ succT →i (X), we observe that

bfT (X, z) ≤ bT (X, z) ≤ bfT (X, z) + |X|. (4)

The maximum value of both, possible damage and forward damage, is n
on each topology T ∈ T(n,C, k) if at least Cz nodes may be removed
(removing the heads of z stripes). Together with Equation (4), we obtain
the following theorem.

Theorem 1. For every topology T ∈ T(n,C, k), z ∈ {1, . . . , k}, and
x ∈ {1, . . . , n}, it holds that

max
X⊆V
|X|=x

bfT (X, z) ≤ max
X⊆V
|X|=x

bT (X, z) ≤ max
X⊆V
|X|=x

bfT (X, z) + min(Cz − 1, x).

In applications of multitree data distribution topologies, we usually have
n� Ck. Furthermore, the maximum achievable forward damage for thresh-
old z on each topology T ∈ T(n,C, k) is in Ω( n

Cz ) if at least z nodes
are removed. Consequently, with growing node numbers, the maximum
possible forward damage dominates the value of the maximum possible
damage.

5



4 Forward-Stable Distribution Topologies

Theorem 1 motivates the study of distribution topologies minimizing
maximum forward damage for all numbers of removed nodes and thresh-
olds z. In the following, we will distinguish between different levels of this
resilience concept by restricting the possible sets of removed nodes. For
this, we introduce the t-restricted attacks χ(T , t) for each T ∈ T(n,C, k)
and t ∈ {1, . . . , k}. An attack X ⊆ V satisfies X ∈ χ(T , t), if there is a set
I ⊆ {1, . . . , k} of t stripe indices such that each v ∈ X either has forward
successors in at least one of the stripes I, or it has no forward successors
at all. Thus, if topology T has inner-node disjoint stripe trees, χ(T , t) is
the set of all attacks containing inner-nodes from at most t stripes and
an arbitrary number of nodes that are leaf in all stripes.
The definition ensures that χ(T , t− 1) ⊆ χ(T , t) is true and that χ(T , k)
equals the power set P(V ) of V . Furthermore, for each t ∈ {1, . . . , k}, the
set χ(T , t) contains all subsets of V that have cardinality up to t.

Now, we can define t-forward-stable and forward-stable distribution
topologies.

Definition 2. A topology T ∈ T(n,C, k) is called t-forward-stable, if for
all z ∈ {1, . . . , k}, x ∈ {1, . . . , n}, and C ∈ T(n,C, k), it holds that

max
X∈χ(T ,t),|X|=x

bfT (X, z) ≤ max
X∈χ(C,t),|X|=x

bfC(X, z).

If T is t-forward-stable for all t ∈ {1, . . . , k}, it is called forward-stable.

Consequently, a topology T is t-forward-stable, if it minimizes the
maximum possible forward damage that is achievable by t-restricted at-
tacks (for all attack cardinalities and thresholds z), while forward-stable
topologies are t-forward-stable for all possible values of t. As we have seen
in Section 3, the latter closely approximate attack-resilient topologies.

In the following, we show necessary and sufficient requirements for
(t-)forward-stable topologies. Furthermore, we give a notion of the com-
putational complexity of finding a forward-stable topology in a given class
T(n,C, k). In particular, we show that a corresponding oracle could be
used to efficiently determine so-called Orthogonal Arrays of given dimen-
sion and maximum strength. The latter is a notorious problem in both
design and coding theory [8,2].

4.1 Basic Requirements

Lemma 1. A t-forward-stable topology T ∈ T(n,C, k) with t ∈ {1, . . . , k}
has the following properties:
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Fig. 3. A distribution topology C ∈ T(9, 2, 3) as in the proof of Lemma 1.

1. ∀v ∈ V : |{i ∈ {1, . . . , k} | succT →i (v) 6= ∅}| ≤ 1

2. ∀v ∈ V : |
⋃
i∈{1,...,k} succT →i (v)| ≤

⌈
n
C

⌉
Proof. We compare T with a topology C ∈ T(n,C, k) that has Ck distinct
heads in total and C heads per stripe. In each stripe i ∈ {1, . . . , k}, all
nodes V \HCi are leafs below the heads HCi . They are grouped such that
each head h ∈ HCi satisfies |succC→i (h)| ∈ {dn/Ce, bn/Cc}. Figure 3 gives
an example of such a topology.

Since it is t-forward-stable with t ≥ 1, topology T should minimize
the maximum possible forward-damage for attacks of cardinality 1 and all
values of z. However, if T lacks one of the mentioned properties, we show
that, for certain z, there are attacks of cardinality 1 on T that achieve
more forward-damage than any such attack can achieve on C:

1. Assume there is v ∈ V and two distinct stripes i, j ∈ {1, . . . , k},
such that succT →i (v) 6= ∅ and succT →j (v) 6= ∅. Then, it holds that

v ∈ succT →i (v) ∩ succT →j (v). In contrast, for all w ∈ V there is no

pair i, j of distinct stripes of C such that succC→i (w) ∩ succC→j (w) 6= ∅.
It follows that maxu∈V bfT ({u}, 2) ≥ 1 and maxu∈V bfC({u}, 2) = 0.
Consequently, T is not t-forward-stable.

2. Assume that ∃v ∈ V : |
⋃
i∈{1,...,k} succT →i (v)| >

⌈
n
C

⌉
. For every topol-

ogy D ∈ T(n,C, k), the definition of forward damage guarantees that

max
X⊆V,|X|=1

bfD(X, 1) = max
u∈V

∣∣∣ ⋃
i∈{1,...,k}

succD→i (u)
∣∣∣. (5)

In C, this value is
⌈
n
C

⌉
, whereas it is higher in T . Again, T is not

t-forward-stable. ut

The first property ensures the construction of inner-node disjoint
stripe trees. The second one corresponds to a balanced distribution of
successors to the heads of each stripe. Both are frequent optimization
goals in peer-to-peer live streaming systems such as [4] and [3]. Note that
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topologies from T(n,C, k) with both properties will have C unique heads
per stripe.

Additionally, such topologies have another interesting property.

Lemma 2. Let T ∈ T(n,C, k) satisfy the requirements of Lemma 1. For
all z ∈ {1, . . . , k} and each X ⊆ V , there exists an attack Y ⊆ HT with
bfT (Y, z) ≥ bfT (X, z) and |Y | = min(|X|, Cz).

Proof. The stripe trees of topology T are inner-node disjoint. Therefore,
the node sets Vi := {v ∈ V | succT →i (v) 6= 0} for i ∈ {1, . . . , k} together
with set V0 := V \

⋃
i∈{1,...,k} Vi form a partition of V .

Since each Ti is a tree, it holds that succT →i (v) ⊆ succT →i (u) for each
v ∈ succT →i (u). Hence, for each stripe Ti the set {succT →i (v) | v ∈ Vi} is
a laminar family of sets. In particular, the forward successor sets of the
heads HTi are the only sets that are not subsets of others.

Now, let X ⊆ V be an arbitrary attack on T . If |X| ≥ Cz, then all
nodes can be isolated by attacking the (at most) Cz heads of z stripes
with the smallest number of heads. Otherwise, set X := X \ V0, and let

Y ′ := {h ∈ HT | ∃i ∈ {1, . . . , k}, v ∈ Vi ∩X : succT →i (v) ⊆ succT →i (h)}.

Due to the node partition and set laminarity, it holds that |Y ′| ≤ |X|. Fur-
thermore, we have ∀i ∈ {1, . . . , k} : succT →i (X) ⊆ succT →i (Y ′) and there-
fore bfT (X, z) ≤ bfT (Y ′, z) for all z ∈ {1, . . . , k}. No superset Y ⊆ HT
with Y ′ ⊆ Y and |Y | = |X| can create less forward-damage. ut

We see, that on every topology with the properties given in Lemma 1, a
maximum value of forward damage can always be achieved by removing
only heads. Consequently, the optimization of their forward successor sets
is the key to finding forward-stable topologies.

4.2 A Matrix Representation and Orthogonal Arrays

For every distribution topology T , there is a convenient matrix represen-
tation of its heads’ forward successor sets.

Definition 3. Let T ∈ T(n,C, k) be given. Using per stripe i ∈ {1, . . . , k}
a bijection σi : H

T
i → {1, . . . , |HTi |}, the matrix MT of forward successor

sets of the heads HT is an n× k matrix MT = (mvi), such that

mvi = σi(j)⇔ v ∈ succT →i (j).

For v ∈ V , MT [v] = (mv1, . . . ,mvk) denotes the v-th row of MT .
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Consequently, the i-th entry of the v-th row of MT encodes the head
supplying node v in stripe i. Its numeric value is determined by bijec-
tion σi. As an example for this definition, Figure 4(b) shows a matrix
corresponding to the topology in Figure 4(a).

Reusing the bijections σi from MT , we can also transform attacks on
the heads of T into sets of k-dimensional vectors. In their i-th position,
these vectors contain entries from {0, . . . , |HTi |}.

Definition 4. Let topology T ∈ T(n,C, k), matrix MT , and the the cor-
responding bijections σi : H

T
i → {1, . . . , |HTi |} for i ∈ {1, . . . , k} be given.

The vector attack σ(X) for an attack X ⊆ HT contains each vector
y ∈ {0, . . . , Ck}k such that for all i ∈ {1, . . . , k} either σ−1i (yi) ∈ X or
(yi = 0) ∧ (X ∩HTi = ∅) is true.

Due to its definition, σ(X) will contain
∏k
i=1 max(1, |X ∩ HTi |) vec-

tors. In position i, such a vector either contains the value σi(h) for some
h ∈ X ∩HTi or the value 0 if X ∩HTi = ∅.

Using vector attacks, the forward damage bfT (X, z) of an attack
X ⊆ HT on T can be determined by counting row vectors of MT that
are in Hamming Distance at most k − z to an element of σ(X). With
d(·, ·) as the Hamming Distance function, we can write

bfT (X, z) =

∣∣∣∣∣ ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succT →i (X)

∣∣∣∣∣
=
∣∣{v ∈ V ∣∣ ∃I ⊆ {1, . . . , k}, |I| = z,∀i ∈ I : σ−1i (mvi) ∈ X

}∣∣
=
∣∣{v ∈ V ∣∣ ∃x ∈ σ(X) : d(M [v],x) ≤ k − z

}∣∣ . (6)

Figure 4(c) gives a graphical example.

Next, we introduce a special class of matrices, the Orthogonal Ar-
rays [8].

Definition 5. For n, k, C ∈ N and t ∈ {0, . . . , k}, an n×k matrix M with
entries mvi ∈ {1, . . . , C} is called an Orthogonal Array OA(n, k, C, t) if
in every n× t submatrix M ′ consisting of t complete columns of M , each
x ∈ {1, . . . , C}t appears exactly λ := n

Ct times as a row.

An OA(n, k, C, t) is said to have strength t. It minimizes the maximum
frequency of a row vector in each of its t-column submatrices. Every
Orthogonal Array of strength t > 1 also has strength t− 1. The strength
of a given n × k matrix is computable in time O(n2k) [8, Chapter 4.4].
Figure 5 shows an OA(18, 3, 3, 2).
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(a) Attack X = {1, 6, 9} on topology T ∈ T(12, 3, 3) leads to bfT (X, 2) = 4 (attacked
nodes gray, nodes suffering forward-damage double-lined).

MT =



1 1 1
1 1 2
1 1 2
1 1 3
2 2 1
2 2 2
2 3 3
2 3 3
3 2 2
3 2 3
3 3 1
3 3 1


(b) MT for
σ1(1) = σ2(2) = σ3(12) = 1,
σ1(5) = σ2(6) = σ3(9) = 2 and
σ1(11) = σ2(7) = σ3(4) = 3.

x

y

z

1

2

3
2

3

2

3

(c) Rows ofMT (dots) in Hamming dis-
tance ≤ 1 (snaked) from vector attack
σ(X) = {(1, 2, 2)} (circled) correspond
to nodes {2, 3, 6, 9}.

Fig. 4. A distribution topology T , a corresponding matrix MT , and forward damage
due to the removal of node set X = {1, 6, 9} from T .

Lemma 3. For every OA(n, k, C, t) M with n ≥ Ck and strength t ≥ 1,
there is a topology T ∈ T(n,C, k) with MT = M that satisfies the require-
ments of Lemma 1.

Proof. We construct a suitable topology T of depth 2. For the use as heads
HT , we determine the indices of Ck suitable rows ofM . For this, construct
a bipartite graph G = ({1, . . . , n}∪̇({1, . . . , C} × {1, . . . , k}), E). Its node
set contains the nodes V = {1, . . . , n} of T and head positions (i, j). A
head position (i, j) corresponds to the role as i-th head in stripe j of T .
The edge set E satisfies {v, (i, j)} ∈ E ⇔M [v]j = i.

10



1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 1 3 3 1 2 1 3 2 3 2 1 2 3 1


Fig. 5. Transpose of an OA(18, 3, 3, 2) with λ = 2.

For each node u, let N(u) be the set of u’s neighbors in G. Since M has
k columns, each node v ∈ V satisfies |N(v)| = k. Since M has strength
at least 1, each head position (i, j) has |N((i, j))| = n/C. Due to Hall’s
Theorem (cmp. [9]) there is a matching covering all head positions in G,
if it holds that ∀S ⊆ {1, . . . , C} × {1, . . . , k} : |

⋃
u∈S N(u)| ≥ |S|. This

is the case in G. For each possible subset S of head positions, there are
|S| · n/C edges to nodes from V . Since these |

⋃
u∈S N(u)| nodes have

|
⋃
u∈S N(u)| · k edges in total and since n/C ≥ k, we obtain

|S| · n
C
≤ |

⋃
u∈S

N(u)| · k ⇒ |S| ≤ |
⋃
u∈S

N(u)|. (7)

Hence, a maximum matching R in G connects each head position with a
unique node from V . For each {v, (i, j)} ∈ R, we use v as head in stripe
Tj of T , define σj(v) := i, and set succTj (v) := {u ∈ V |M [u]j = i}. In
each stripe of the emerging topology T , every node is either head or child
of a head. The matching R guarantees that we have |HT | = Ck and that
each head forwards in only one stripe. The defined bijections σj with
j ∈ {1, . . . , k} establish MT = M . Since M is of strength at least 1, for
all j ∈ {1, . . . , k} each head v ∈ HTj satisfies |succT →j (v)| = n/C. All
other forward successor sets are empty. ut

A matrix MT of high strength is beneficial for the forward-stability of T .

Theorem 2. A topology T ∈ T(n,C, k) is t-forward-stable, if it has the
properties of Lemma 1 and MT is an OA(n, k, C, t).

Proof (sketch). For reasons of space, we can only give a proof sketch. See
[10, Theorem 5.3.14] for all details.

Given a topology T ∈ T(n,C, k), we call each vector x ∈ {0, . . . , Ck}k
satisfying ∀i ∈ {1, . . . , k} : xi ≤ |HTi | an attack distribution for T and say
that an attack X ⊆ HT follows x if ∀i ∈ {1, . . . , k} : |X∩HTi | = xi holds.

If T has the properties given in Lemma 1 and MT has strength t,
then for each threshold z ∈ {1, . . . , k} the forward damage of all attacks
X ∈ χ(T , t) on T following the same attack distribution x is equal. Fur-
thermore, the value of this forward damage on T gives a lower bound on
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the average (and maximum) forward damage of attacks following x on
other topologies from T(n,C, k). Consequently, for each z ∈ {1, . . . , k}
and each C ∈ T(n,C, k) on which attacks with distribution x exist, there
is Y ∈ χ(C, t) following x with bfT (X, z) ≤ bfC(Y, z).

If there is no attack with distribution x on C, then a suitable distribu-
tion x′ can be found by adapting x with regard to the number of heads
available in C. Thus, for each C ∈ T(n,C, k) and each attack X ∈ χ(T , t),
we can find an attack Y ∈ χ(C, t) creating at least the same forward
damage on C as X does on T . Consequently, T is t-forward-stable. ut

Next, we show that the matrix MT of a forward-stable topology
T ∈ T(n,C, k) must necessarily be an Orthogonal Array of maximum
possible strength.

Theorem 3. If an OA(n, k, C, t) exists, then for every t′-forward-stable
distribution topology T ∈ T(n,C, k) with t′ ≥ t, MT is an OA(n, k, C, t).

Proof. Topology T must have the properties listed in Lemma 1. Further-
more, assume that T is not an OA(n, k, C, t). If T were t′-forward-stable,
it had to minimize maximum forward-damage for attacks of cardinality t
and threshold z = t. We show that under the above assumption, this is
not the case. For this, let C ∈ T(n,C, k) be a topology with the properties
listed in Lemma 1 and MC being an OA(n, k, C, t) (the existence of C is
guaranteed by Lemma 3).

Set z = t and study the possible forward-damage of attacks of cardi-
nality t. Due to Lemma 2, it suffices to consider attacks removing only
heads. Such attacks may target heads from less than t different stripes.
This would lead to forward-damage of 0 on both T and C since they have
inner-node disjoint stripes. Alternatively, attacks can target one head
from each stripe of a combination of t stripes. In this case, the maxi-
mum possible forward-damage on T and C equals the maximum row fre-
quency in MT resp. MC over all possible restrictions to t columns (cmp.
Equation (6)). An attack achieving this damage contains the heads cor-
responding to the entries in the respective columns of the most frequent
row vector. Since C is an OA(n, k, C, t) but T is not, this frequency is
smaller on C than on T . Hence, T is not t-forward-stable and, thus, not
t′-forward-stable. ut

Summing up, this subsection has shown that – given the basic proper-
ties identified in Lemma 1 – the forward-stability of a distribution topol-
ogy T ∈ T(n,C, k) is characterized by its matrix MT . In particular, if
an OA(n, k, C, t) exists, it is necessary and sufficient that MT is such
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an Orthogonal Array to obtain a t-forward-stable topology. To reach a
maximum level of forward-stability, MT must be an Orthogonal Array of
maximum possible strength t. This observation is used in Subsection 4.3
to provide a notion of the computational complexity of finding forward-
stable distribution topologies.

4.3 Hardness of Finding Forward-Stable Topologies

For given parameters n,C, k ∈ N, let t̂(n,C, k) be the maximum value t
such that an OA(n, k, C, t) exists. If t̂(n,C, k) is efficiently computable,
it is also possible to use binary search to efficiently determine extremal
values for the parameter k of Orthogonal Arrays.

However, resolving the computational complexity of finding such ex-
tremal parameters and finding Orthogonal Arrays featuring them are
long-standing open problems in design theory (cmp. [8, p.32]). A spe-
cial case in coding theory is the MDS conjecture [2,11] which claims to
specify the maximum length of MDS codes. Its disputed part was first
stated in 1955 [12].

We show that finding an efficient construction strategy for t-forward-
stable distribution topologies would resolve many of the above questions.

Theorem 4. Let O be an oracle returning a t-forward-stable topology
T ∈ T(n,C, k) on input (n, k, C, t) if one exists.

– If one exists, an OA(n, k, C, t) can be constructed by one call to O
plus O(nk)-time post-processing.

– The function t̂(n, k, C) can be evaluated by dlog(k)e calls to O plus
O(n2k)-time post-processing.

Proof. Due to the Theorems 2 and 3, there is a t-forward-stable topology
T ∈ T(n,C, k) if an OA(n, k, C, t) exists. In this case, MT must be an
OA(n, k, C, t). Using input (n, k, C, t), such a T is obtained by one call
to O. The information necessary to return the n × k matrix MT can be
gathered by a traversal of all stripe trees. This needs time O(nk).

Applying binary search, we need dlog(k)e oracle calls to find the maxi-
mum t′ ∈ {0, . . . , k} such that a t′-forward-stable topology T ∈ T(n,C, k)
exists. By Theorem 3,MT must be an OA(n, k, C, t̂(n, k, C)). The strength
of MT can be determined in time O(n2k). ut

In the light of these results, the goal of identifying efficient construction
schemes for forward-stable distribution topologies turns out to be a chal-
lenging task. Advancements would lead to a breakthrough in multiple
connected fields of research.
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Until then, it is possible to make use of the large number of construc-
tions and catalogues for Orthogonal Arrays that are already available
[8]. However, most of them are specific for certain parameter combina-
tions and not of provably maximum strength. All algorithmic approaches
known to the author that try to find Orthogonal Arrays with given pa-
rameters rely on metaheuristics and local search schemes (e.g., [13,14]).

5 Conclusion

In this document, we studied multitree data distribution topologies aim-
ing to minimize the maximum number of nodes that can be isolated by
an attack. In particular, this minimization should hold for every pos-
sible number of removed nodes and every level of redundancy in data
encoding. We introduced the notion of forward-stable multitree data dis-
tribution topologies and showed that they closely approximate this goal if
the number of nodes considerably exceeds the number of possible source
neighbors. This is a common condition in applications of the studied
topologies.

We found basic requirements for forward-stable distribution topolo-
gies and pointed out that the resilience of topologies adhering to these
requirements is captured by a matrix representation of their heads’ for-
ward successor sets. We showed that such a topology is t-forward-stable
if its matrix is an Orthogonal Array of strength t. Furthermore, the use of
Orthogonal Arrays of maximum strength is necessary for forward-stable
topologies. This result allowed to connect the problem of finding forward-
stable topologies to long-standing open problems in design and coding
theory.

Since for higher numbers of nodes, attack-resilient and forward-stable
topologies must be very similar, this also provides a notion of hardness of
finding attack-resilient distribution topologies. The identified topologies
and results are relevant for data distribution applications such as peer-to-
peer live streaming systems. Furthermore, the studied model could also
be applied to certain data aggregation tasks in wireless sensor networks.
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6. Grau, S., Fischer, M., Schäfer, G.: On the Dependencies between Source Neigh-
bors in Optimally DoS-stable P2P Streaming Topologies. In: IEEE International
Conference on Distributed Computing Systems 2011. ICDCS (2011) 121–130

7. Dán, G., Fodor, V.: Stability and performance of overlay multicast systems em-
ploying forward error correction. Perform. Eval. 67 (2010) 80–101

8. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Appli-
cations. Springer-Verlag, New York (1999)

9. Diestel, R.: Graph Theory. Third edn. Volume 173 of Graduate Texts in Mathe-
matics. Springer-Verlag, Heidelberg (2005)

10. Grau, S.: On the Stability of Distribution Topologies in Peer-to-Peer Live Stream-
ing Systems. PhD thesis, Technische Universität Ilmenau, Germany (2012)

11. Roth, R.M.: Introduction to Coding Theory. Cambridge University Press (2006)
12. Segre, B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Math. Pura

Appl. (39) (1955) 357–359
13. Nguyen, N.K., Liu, M.Q.: An algorithmic approach to constructing mixed-level

orthogonal and near-orthogonal arrays. Comput. Stat. Data An. 52 (2008) 5269–
5276

14. Xu, H.: An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays
with Mixed Levels and Small Runs. Technometrics 44 (2002) 356–368

15


	Attack-Resilient Multitree Data Distribution Topologies

